

Xyfluor® is a proprietary, highly fluorinated elastomer. The oxygen in the polymer backbone provides outstanding low-temperature capabilities - far better than FKM or FFKM elastomers. The polymer provides improved resistance to many harsh chemicals that can attack the hydrogen in FKM elastomers. The chemical resistance of Xyfluor® approaches but is not equivalent to FFKM elastomers.

- A = Swell < 10% after exposure. Suitable.
- B = Swell > 10% & < 20% after exposure. Generally suitable.
- C = Swell >20% & < 40% after exposure. May be suitable in some situations.
- D = Swell > 40% after exposure. Not suitable.
- N = Insufficient data.

Test: Full immersion, Room Temperature, 3 days

CHEMICAL	RATING	CHEMICAL	RATING
acetaldehyde	Α	amomnium phosphate	Α
acetic acid,		ammonium stearate	Α
glacial	Α	ammonium sulfate	Α
hot	Α	ammonium thiocyanate	Α
5%	Α	amyl acetate	A/B
acetic anhydride	Α	amyl alcohol	Α
acetone	Α	amyl nitrate	Α
acetone cyanohydrin	Α	aniline	Α
acetyl chloride	Α	aniline hydrochloride	Α
acetylene gas	Α	anti-freeze, alcohol or glycol based	Α
acrylonitrile	Α	aqua regia	N
adipic acid	Α	argon gas	Α
alcohol, denatured	Α	arsenic acid	Α
alkyl benzene	Α	ash slurry	Α
alkyl-arylsulphonic acid	Α	asphalt	Α
alumina trihydrate	Ν	barium chloride	Α
aluminum acetate	Ν	barium hydroxide;	
aluminum chloride	Ν	mono-, octa-C63, pentahydrate	
aluminum nitrate	Ν	barium nitrate	Α
aluminum potassium sulfate	N	beer	Α
aluminum sulfate	N	beet sugar	Α
amines, mixed	A/B	benzaldehyde	Α
ammonia,		benzene	Α
gas, cold	Α	benzenesulfonic acid	Α
gas, hot	Ν	benzochloride	Α
liquid, (anhydrous)	N	benzoic acid	Α
ammonium acetate	Α	benzotrifluoride	С
ammonium bicarbonate	Α	bleach solutions	Α
ammonium bifluoride	N	blood	Α
ammonium bromide	Α	bone oil	Α
ammonium carbonate	Α	boric acid	Α
ammonium chloride	Α	boron trichloride	N
ammonium hydroxide	Α	bromine	N
ammonium nitrate	Α	bunker fuel oil	Α

Xyfluor® is a proprietary, highly fluorinated elastomer. The oxygen in the polymer backbone provides outstanding low-temperature capabilities - far better than FKM or FFKM elastomers. The polymer provides improved resistance to many harsh chemicals that can attack the hydrogen in FKM elastomers. The chemical resistance of Xyfluor® approaches but is not equivalent to FFKM elastomers.

A = Swell < 10% after exposure. Suitable.

B = Swell > 10% & < 20% after exposure. Generally suitable.

C = Swell >20% & < 40% after exposure. May be suitable in some situations.

D = Swell > 40% after exposure. Not suitable.

N = Insufficient data.

Test: Full immersion, Room Temperature, 3 days

CHEMICAL	RATING	CHEMICAL	RATING
butadine	A/B	cement	Α
butane	A/B	chloric acid	Α
buttermillk	Α	chlorinate solvents	
butyl acetate	A/B	dry	В
butyl alcohol	Α	wet	В
butylamine	A/B	chlorine dioxide	N
butylene	A/B	chlorine,	
butylene glycol	Α	dry	Ν
butyl ether	В	wet	N
butyric acid	Α	chloroacetic acid	В
calcium acetate	Α	chloroacetone	В
calcium carbonate	Α	chlorobenzene	Α
calcium chlorate	Α	chloroform	В
calcium cyanide	Α	chlorosulfonic acid	Α
calcium hydrogen sulfite	Α	chocolate	Α
calcium hydrosulfide	Α	chromic acid	N
calcium hydroxide, aqueous	Α	chromic oxide	Α
calcium hypochlorite	Α	chromium potassium sulfate	Α
calcium liquors	Α	citric acid	Α
calcium magnesium chloride	Α	clay slurry	Α
calcium nitrate	Α	coal-tar	Α
calcium phosphate;		coal-tar distillate	Α
dibasic, monobasic, tribasic	Α	coconut oil	Α
calcium sulfate, aqueous	Α	cod-liver oil	Α
carbamate	Α	copper acetate	N
carbon dioxide,		copper ammonium acetate	N
dry	Α	copper chloride	N
wet	Α	copper cyanide	N
carbon disulfide	Α	copper nitrate	N
carbon monoxide	Α	copper sulfate, < 50%	N
carbon tetrachloride	В	corn oil	Α
carbonic acid	Α	cottonseed oil	Α
castor oil	Α	creosote, coal-tar	Α
catsup	Α	cresol	Α

Xyfluor® is a proprietary, highly fluorinated elastomer. The oxygen in the polymer backbone provides outstanding low-temperature capabilities - far better than FKM or FFKM elastomers. The polymer provides improved resistance to many harsh chemicals that can attack the hydrogen in FKM elastomers. The chemical resistance of Xyfluor® approaches but is not equivalent to FFKM elastomers.

A = Swell < 10% after exposure. Suitable.

B = Swell > 10% & < 20% after exposure. Generally suitable.

C = Swell >20% & < 40% after exposure. May be suitable in some situations.

D = Swell > 40% after exposure. Not suitable.

N = Insufficient data.

Test: Full immersion, Room Temperature, 3 days

CHEMICAL	RATING	CHEMICAL	RATING
crude oil - sour	Α	ethane	Α
cumene	Α	ethanethiol	Α
cutting oil	Α	ethanolamine	Α
cyanogen	Α	ethyl acetate	Α
cyclohexane	A/B	ethyl alcohol	Α
decahydronaphthalene	Α	ethylamine	В
detergent, H20 solution	Α	ethylbenzene	Α
diacetone alcohol	Α	ethylene	Α
diallyl phthalate	Α	ethylene dibromide	В
dibromoethyl benzene	N	dethylene dichloride	В
dibutylamine	A/B	ethylene glycol	Α
dibutyl cellosolve adipate	Α	ethylene oxide	В
dibutyl phthalate	Α	ethyl ether	В
dichlorobenzene	В	ethyle formate	Α
diesel oil	Α	fatty acids	Α
diethanolamine	Α	ferric sulfate, aqueous	Α
diethylamine	В	ferrous sulfate, aqueous	Α
diethyl carbonate	Α	fluorine, gas, dry < 300°F	D
diethylene glycol	Α	fluosilicic acid	N
diethylenetriamine	Α	formaldehyde	Α
diethyl phthalate	Α	formic acid < 160°F	Α
diisobutyl ketone	Α	Freon 11®	D
dimethylamine	Α	Freon 113®	D
dimethyl formamide	Α	Freon 114®	D
dimethyl phthalate	Α	Freon 12®	D
dimethyl terephthalate	Α	Freon 22®	D
dinitrochlorobenzene	Α	Freon 502®	D
dioctyl phthalate	Α	fruit juices	Α
diphenyl	Α	fuel oil,	
Dowtherm® (DOW chemical)		#1, #2	Α
A	Α	#5 light, #5 heavy, #6	Α
E	Α	fumaric acid	Α
209		furfural	В
epichlorohydrin	Α	gas oil	Α

Xyfluor® is a proprietary, highly fluorinated elastomer. The oxygen in the polymer backbone provides outstanding low-temperature capabilities - far better than FKM or FFKM elastomers. The polymer provides improved resistance to many harsh chemicals that can attack the hydrogen in FKM elastomers. The chemical resistance of Xyfluor® approaches but is not equivalent to FFKM elastomers.

- A = Swell < 10% after exposure. Suitable.
- B = Swell > 10% & < 20% after exposure. Generally suitable.
- C = Swell >20% & < 40% after exposure. May be suitable in some situations.
- D = Swell > 40% after exposure. Not suitable.
- N = Insufficient data.

Test: Full immersion, Room Temperature, 3 days

CHEMICAL	RATING	CHEMICAL	RATING
gasoline	A/B	isopropyl acetate	A/B
gelatin	Α	isopropyl alcohol	Α
glucose	Α	isopropyl ether	В
glycerol	Α	jet fuel	Α
glycine	Α	kerosene	Α
helium	Α	lacquer	Α
heptane	A/B	lactic acid,	
hexyl alcohol	Α	cold	Α
hydraulic oil, petroleum based	Α	hot	Α
hydrazine	Α	lard	Α
hydrobromic acid	Α	latex	Α
hydrochloric acid,		ligroin	A/B
concentrated	Α	lime slurry	Α
diluted	Α	linoleic acid	Α
< 20%, well service	Α	linseed oil	Α
20% - 30%, well service	Α	liquefied petroleum gas	В
hydrocyanic acid	Α	lubricating oil, petroleum base	Α
hydrofluoric acid,		magnesium chloride	Α
Poor compatibility with strong acids.		magnesium hydroxide	Α
cold, < 65%	С	magnesium sulfate	Α
cold, > 65%	С	maleic acid	Α
hot, < 65%	Ν	maleic anhydride	Α
hot, > 65%	Ν	malic acid	Α
hydrogen	Α	manganous chloride	Α
hydrogen chloride, gas, dry	Α	melamine resin	Α
hydrogen fluoride, anhydrous	N	mercuric chloride	Α
hydrogen peroxide	Α	mercury	Α
hydrogen sulfide,		mesityl oxide	Α
dry, cold	Α	methane	В
dry, hot	Α	methyl acetate	A/B
wet, cold		methyl alcohol	Α
wet, hot	Α	methyl benzoate	Α
hypochlorous acid	Α	methyl bromide	В
isobutane	A/B	methyl chloride	В

Xyfluor® is a proprietary, highly fluorinated elastomer. The oxygen in the polymer backbone provides outstanding low-temperature capabilities - far better than FKM or FFKM elastomers. The polymer provides improved resistance to many harsh chemicals that can attack the hydrogen in FKM elastomers. The chemical resistance of Xyfluor® approaches but is not equivalent to FFKM elastomers.

- A = Swell < 10% after exposure. Suitable.
- B = Swell > 10% & < 20% after exposure. Generally suitable.
- C = Swell >20% & < 40% after exposure. May be suitable in some situations.
- D = Swell > 40% after exposure. Not suitable.
- N = Insufficient data.

Test: Full immersion, Room Temperature, 3 days

CHEMICAL	RATING	CHEMICAL	RATING
methylene bromide	В	paraffin wax, molten	Α
methylene chloride	В	peanut oil, vegetable	Α
methyl ethyl ketone	A/B	pectin, liquor	Α
methyl formate	Α	pentane	A/B
methyl isobutyl ketone	A/B	perchloric acid	Α
methyl methacrylate	Α	perchloroethylene	В
methyl propionate	Α	phenol, 10%	Α
methyl tertiary butyl ether	В	phenylacetic acid	Α
milk	Α	phosphoric acid,	
mineral oil	Α	concentrated	Α
molasses	Α	diluted	Α
naphtha, crude	В	phthalic anhydride	Α
naphthalene	Α	picoline, alpha	Α
natrual gas, sour	В	picric acid,	
nickel chloride	Α	H₂0 solution	Α
nickel sulfate	Α	molten	Α
nitric acid,		pine oil	Α
Poor compatibility with strong acids.		polyethylene glycol	Α
diluted	Α	polypropylene slurry	Α
concentrated	Α	polyvinyl acetate emulsion	Α
red fuming	Ν	polyvinyl alcohol	Α
nitrobenzene	Α	potassium bromide	Α
nitrogen gas	Α	potassium carbonate	Α
nitromethane	Α	potassium chlorate	Α
oleic acid	Α	potassium chloride	Α
olive oil	Α	potassium cyanide	Α
oxalic acid	Α	potassium dichromate	Α
oxygen, gas	Α	potassium hydroxide,	
-10°F to 200°F	Α	diluted	Α
200°F to 400°F	Α	concentrated	Α
ozone	Α	potassium nitrate	Α
pain, oil based	Α	potassium permanganate	Α
palm oil	Α	potassium phosphate,	
palmitic acid	Α	dibasic, monobasic, tribasic	Α

Xyfluor® is a proprietary, highly fluorinated elastomer. The oxygen in the polymer backbone provides outstanding low-temperature capabilities - far better than FKM or FFKM elastomers. The polymer provides improved resistance to many harsh chemicals that can attack the hydrogen in FKM elastomers. The chemical resistance of Xyfluor® approaches but is not equivalent to FFKM elastomers.

A = Swell < 10% after exposure. Suitable.

B = Swell > 10% & < 20% after exposure. Generally suitable.

C = Swell >20% & < 40% after exposure. May be suitable in some situations.

D = Swell > 40% after exposure. Not suitable.

N = Insufficient data.

Test: Full immersion, Room Temperature, 3 days

CHEMICAL		RATING	CHEMICAL	RATING
paper stock		Α	potassium sulfate	Α
propane		A/B	sodium silicate	Α
propionic acid, < 150°F		Α	sodium sulfate	Α
propyl acetate		A/B	sodium sulfide	Α
propyl alcohol		Α	sodium sulfite	Α
propylene		A/B	sodium thiocyanate	Α
propylene oxide		В	sodium thiosulfate	Α
pulp stock		Α	soybean oil	Α
pyridine		Α	starch	Α
quenching oil		Α	steam, < 350°F	Α
rapeseed oil		Α	steam, > 350 °F-500 °F	Α
red liquor		Α	stearic acid	Α
refrigerator oil		Α	styrene	Α
sewage		Α	sulfite waste liquor	Α
silver nitrate		Α	sulfur,	
soap solutions		Α	molten	Α
soda ash		Α	in water	Α
sodium acetate		Α	sulfur chloride	Α
sodium bicarbonate		Α	sulfur dioxide,	
sodium bisulfate		Α	wet	Α
sodium bisulfite,			dry	Α
	< 200 °F	Α	sulfuric acid,	
sodium carbonate			Poor compatibility with strong acids.	
	> 200 °F	Α	diluted	Α
sodium chloride			concentrated	Α
	> 200 °F		fuming	D
sodium cyanide, aqueous		Α	sulfurous acid	Α
sodium dichromate		Α	tall oil,	
sodium dithionite		Α	< 450 °F	Α
sodium hydroxide, diluted		Α	tallow	Α
sodium hypochlorite, 20%		Α	tartaric acid, aqueous	Α
sodium nitrate		Α	terephthalic acid	Α
sodium peroxide		Α	tetrachloroethane	В
sodium phosphate,			tetrahydrofuran	В

Xyfluor® is a proprietary, highly fluorinated elastomer. The oxygen in the polymer backbone provides outstanding low-temperature capabilities - far better than FKM or FFKM elastomers. The polymer provides improved resistance to many harsh chemicals that can attack the hydrogen in FKM elastomers. The chemical resistance of Xyfluor® approaches but is not equivalent to FFKM elastomers.

A = Swell < 10% after exposure. Suitable.

B = Swell > 10% & < 20% after exposure. Generally suitable.

C = Swell >20% & < 40% after exposure. May be suitable in some situations.

D = Swell > 40% after exposure. Not suitable.

N = Insufficient data.

Test: Full immersion, Room Temperature, 3 days

CHEMICAL	RATING	CHEMICAL	RATING
dibasic, monobasic, tribasic	Α	thiols	Α
titanium dioxide	Α	vinylidine chloride	В
titanium tetrachloride	N	water,	
toluene	Α	chlorinated	Α
trichloroethane	В	fresh	Α
trichloroethylene	В	heavy	Α
tricresyl phosphate	Α	salt or sea	Α
triethanolamine	Α	whiskey	Α
triethylamine	A/B	white liquor	Α
tung oil	Α	wine	Α
turpentine (oil)	Α	wood pulp stock	Α
urea	Α	wort	Α
urea-formaldehyde resin	Α	xylene	Α
varnish	Α	yeast	Α
vinegar	Α	zinc chloride	Α
vinyl acetate	A/B	zinc nitrate	Α
vinyl chloride	В	zinc sulfate	Α