

THE FUTURE OF FLYING WITH DLF

Xycomp® DLF™ components provide significant weight reduction and reduce energy costs compared to metal alternatives.

Assembled Metal Component

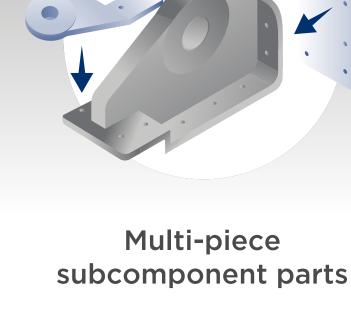
Original Multi-piece Complex Shape

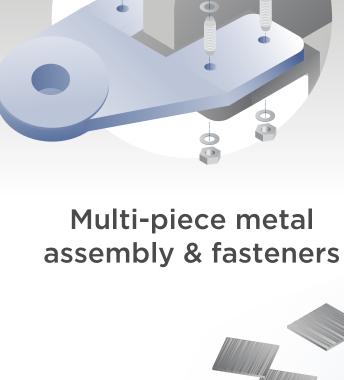
costs of airlines close to 27% of their operating cost.

61%

New Xycomp® DLF™

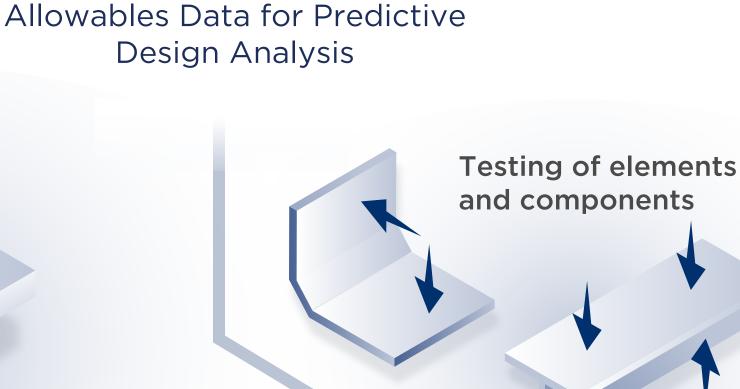
Design


Traditional Metal CNC Operation


Case Study Example: One Machined 0.6lb Bracket Requires 3.9lbs

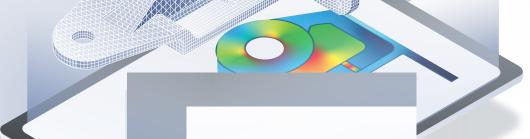
of Aluminum Raw Material, by Comparison 0.37lbs of Xycomp® DLF™

is Required to Net-Mold One 0.37lb Bracket (no waste)



2007 and First Production Parts Delivered in 2011

Design Analysis



Testing of

material coupons

Material allowables design data

operating cost of \$450/lb/year

DLF[™] Mold

Flow Model

FEA Model for

the Application

Optimized

Design

Single-Piece

Xycomp® DLF™ (ProFusion®)

compression molding

Path our simplified)

Xycomp® DLF™ Material &

Manufacturing Capability

Mold Cavity Riffied)

in aerospace manufacturing

costs of airlines dropping to

23% of their operating cost.

were composites* with the **fuel**

More Than 400,000 DLF™ Components Currently in Service**

into Final Composite Assembly

Integration of Xycomp® DLF™ Composite Component

fuel efficiency by more than 135% between 1978 and 2019, saving over five billion metric tons of CO₂.

U.S. airlines improved their

Xycomp® DLF™ Part in the final assembly

final composite part

XYCOMP® DISCONTINUOUS LONG

FIBER (DLF™) COMPOSITES

gtweed.com

*Airbus A350 XWB

* * including attachment fittings, fairing and other components across 12 commercial aircraft platforms Sources: Airlines.org, Businesswire.com, Composites Forecasts & Consulting LLC, Greene Tweed, IATA.org, Keyshone.com, Statista.com

The Boeing 787, with a first flight in 2009, had a "50% composite material usage" and 20% aluminum. **Xycomp® DLF™** Material

Xycomp® DLF™ Developed in

Xycomp® DLF™ Predictive Analysis Enables Redesign for an Optimal Single-piece DLF™ Component Xycomp® DLF™ Minimal/No Waste with Near-Net Molding Results in Typical Weight Savings of 35% to 50% Changing from metal to composite results in an average savings in

Xycomp® DLF™ Manufacturing Technology Enables Cost-effective Production Automated Processing and Control For Repeatability and Efficiency with **Minimal Operator Interaction** By 2019, 53% of materials used

 $Xycomp^{\mathbb{R}} DLF^{\mathbb{T}}$

The lightweight, high-performance alternative to metal parts, components and assemblies